
Using the Arduino Audio Tools in Xeus Jupyterlab

In my AudioTools I have quite a few sound effects and it is quite a challange to test

them all. In order to make my life a little bit easier I decided to make my framework

usable in Jupyterlab.

xeus-cling is a Jupyter kernel for C++ based on the C++ interpreter cling and the

native implementation of the Jupyter protocol xeus. So we can use the AudioTools

directly in Jupyterlab with Xeus/Cling!

As a precondition I expect that you have Xeus/Cling already installed!

So, first we need to provide the path to the source code. We can use the one that we

have installed for Arduino

Next we can include the application. We also add AudioLibs/Jupyter.h which provides

the API for Jupyter

Audio API

Now we are ready to define the audio. Nothing special here:

In order to output sound in Jupyterlab we create a JupyterAudio object which defines

the generated wav file name, the audio source and the number of buffers and buffer

size to limit/specify then length of the generated audio.

Outputting the audio object is generating a Web Audio Player

We can also display the audio as a chart

In [1]: #pragma cling add_include_path("/Users/pschatzmann/Dev/Arduino/libraries/

In [2]: #include "AudioTools.h"
#include "AudioLibs/Jupyter.h"

In [3]: int channels = 2;
int sample_rate = 44100;
int frequency = 800;
SineWaveGenerator<int16_t> sineWave(32000);
sineWave.begin(channels, sample_rate, frequency);
GeneratedSoundStream<int16_t> sound(sineWave); // Stream gene

In [5]: JupyterAudio audio("test1.wav", sound, 600, 1024);

In [6]: audio

Out[6]:
0:000:00 / 0:02/ 0:02

https://xeus-cling.readthedocs.io/en/latest/installation.html

Files

I am also supporting the Arduino SD File API

360044

Using C++

We can use standard C++ to process or output data:

-26351
-28245
-29772
-30913
-31653
-31982
-31896
-31396
-30488
-29185

In [7]: audio.chart(0)

Out[7]:

In [4]: auto file = SD.open("test1.wav", FILE_READ);
file.size()

Out[4]:

In [5]: file.close();
SD.remove("test1.wav");

In [8]: for (int j=0;j<10;j++){
 std::cout << sineWave.readSample() << endl;
}

